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Abstract 
Accidental release of petroleum hydrocarbons to the subsurface may occur through spills around 
refineries, leaking pipelines, storage tanks or other sources.  If the spill is large, the hydrocarbon 
liquids may eventually reach a water table and spread laterally in a pancake-like lens. 
Hydrocarbons that exist as a separate phase are termed light non-aqueous phase liquids 
(LNAPL).  The portion of the LNAPL that is mobile, not entrapped as residual saturation, is 
termed free product.  

This paper presents new analytical solutions for the design of long-term free-product 
recovery from aquifers with skimmer-, single- and dual-pump wells.  The solutions are for 
steady-state flow, based on the assumption of vertical equilibrium, and include the effect of 
coning of LNAPL, air, and water on flow.  The solutions are valid for soils of large hydraulic 
conductivity where the effect of capillary pressure on coning is small.  

The results show how to estimate the maximum rate of inflow of LNAPL for skimmer wells, 
i.e. wells in which LNAPL is recovered with little or no water production.  The paper also shows 
how to calculate the increase in LNAPL recovery when water is pumped by single or dual-pump 
wells.  A simple equation is given that can be used to adjust the water rate to avoid smearing of 
the LNAPL below the water table.  
 
Introduction 
Petroleum hydrocarbon products are examples of a “light” non-aqueous phase liquid (LNAPL), 
which means that they are lighter than and immiscible with water. Being lighter than water, such 
liquids float on the water table of a groundwater aquifer. Large amounts of spilled petroleum 
hydrocarbon liquids will depress the 100% water-saturated zone and cause a hydrocarbon liquid 
lens to spread laterally across the water table in a pancake-like lens.  The mobile portion of the 
LNAPL is known as “free product.”  The acronym OIL, which stands for an organic immiscible 
liquid, is also used to refer to LNAPL.   

Effective cleanup of an aquifer requires a) timely removal of LNAPL while b) limiting 
additional spreading of the contaminant and c) minimizing excessive pumping of the aqueous 
phase.  Lowering the water table near the well can cause the LNAPL to flow into the well.  Large 
rates may cause hydrocarbon to be smeared into soils below the original water table, soils that 
were perhaps originally uncontaminated.  Smearing increases the volume of soil that contains 
residual hydrocarbon contamination, increasing contamination of the aquifer.  Smearing can 
result in a reduction in the volume of recoverable free hydrocarbon, which may increase long-
term remediation costs.  Excessive pumping also produces large volumes of water that must be 
treated and discharged (Fig. 1).  Since small water pumping rates may require longer remediation 
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times, a tradeoff exists between pumping too much water and recovering the LNAPL at too small 
of a rate.  

Many free-product recovery systems in operation employ either single- or dual-pump 
recovery wells, such as the dual-pump system shown schematically in Fig. 1.  Skimmer wells, 
which produce LNAPL with little or no water production, are also used but these are less 
efficient than single- or dual-pump wells.  Limited guidance is currently available regarding how 
best to operate these wells for optimum long-term free-product LNAPL recovery (API 1996, 
Charbeneau et al. 1999).  As a result, prolonged remediation times and unnecessary expenditures 
may occur (Charbeneau et al. 1999).  

Numerical simulation models (Hochmuth and Sunada 1985, Kaluarachchi and Parker 1989, 
Huyakorn et al. 1994, Parker et al. 1994, Charbeneau and Chiang 1995) can analyze and design 
LNAPL migration and recovery.  These models usually assume vertical equilibrium of the 
associated fluids, and simulate LNAPL recovery in two-spatial dimensions rather than in three.  
These models also include the effect of capillary pressure on coning by accounting for the 
difference between the floating product thickness observed in monitoring wells and the thickness 
of porous media containing LNAPL, i.e. the vertical saturation distribution in the soil.  

Charbeneau and Chiang (1995) presented an analytical model for calculating free-product 
recovery rates using a dual-pump system.  They also used a vertically averaged numerical 
simulation model, TWOLAY.  TWOLAY assumes segregated water and LNAPL layers with 
constant saturation and relative permeability values.  Delliste et al. (1998) and Johns et al. (2002) 
developed analytical models for how capillary pressure affects coning for two-phase flow.  
Charbeneau et al. (1999, 2000) developed comprehensive guidelines for free-product recovery 
using single- and dual-pump wells.  They assumed that the LNAPL thickness is constant with 
radial distance from the well, an assumption that is strictly valid only for thin LNAPL layers.     

In this paper, we present new analytical solutions for estimating recovery of LNAPL by 
skimmer-, single- and dual-pump wells, in which the thickness of LNAPL, air, and water vary 
radially.  The new analytical model provides benchmark solutions that can be used to test the 
accuracy of more complicated numerical models (e.g. Kaluarachchi and Parker 1989) that 
include the effect of capillary pressure on coning.  The paper begins by presenting the 
mathematical model, assumptions, and equations used.  The equations and boundary conditions 
are made dimensionless to generalize the solutions and determine the governing dimensionless 
groups.  We present the solution for two-phase flow of LNAPL and water and limiting forms of 
the solution.  The flow of a skimmer well is such a limiting case.  Pumping windows are 
developed that show the physical range of possible LNAPL and water rates for the single- and 
dual-pump wells.  Last, we show how to pump as to avoid smearing of LNAPL below the water 
table.  
 
Mathematical Model 
Figure 2 illustrates the steady-state downward coning of the phases when only LNAPL and water 
are flowing. The air phase is assumed to be static.  The first subscript on dimensionless thickness 

indicates the phase, whether it is LNAPL ( ) or water ( ).  The second subscript  refers to 
the wellbore and i  refers to the initial layer thickness before flow began, which is constant at the 
well’s radius of influence

b o w w

R .  Fluid is pumped from a vertical wellbore of radius wr  at a total 
volumetric flow rate of , where Q .  How the thickness of each layer in Fig. 2 
varies with radial position is a function of the physical properties of the fluids and soil as well as 
the phase pumping rates. 

tQ wt QQ= o +
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The following additional assumptions are made: 
• Fluids are incompressible and the fluid viscosities are constant. 
• The well produces LNAPL and water at a constant volumetric rate (this is a boundary 

condition). 
• There is one-dimensional radial flow towards the well. 
• Fluids are in vertical equilibrium (VE), a condition that causes maximum crossflow of fluids 

in the vertical direction (Lake 1989).  Appendix A discusses the wide applicability of the VE 
assumption.  

• The aquifer is homogeneous and has a constant thickness.   
• The aquifer is of sufficient conductivity that capillary pressure is negligible.  This assumption 

implies that the phases flowing are segregated by sharp interfaces, i.e. there are constant but 
possibly different phase saturations in each layer.  Although the saturation within layers is 
constant, the effect of residual phase saturations on flow is included because each layer has 
different relative permeabilities. 

 
With these assumptions, the volumetric flow rate at steady-state for phaseα can be written as 

dr
dhrTQ α

αα π2= ............................................................................................................. (1) 

where the transmissivity is defined as the product of the phase hydraulic conductivity and its 
thickness,  

ααα bKT = ...................................................................................................................... (2) 

The parameter is the effective phase conductivity, which is a function of the relative 
permeability in the LNAPL or water layer ( k ).  Because saturation is constant in a layer, i.e. 
LNAPL at irreducible water saturation, the relative permeability and effective conductivity are 
also constant within a layer.  The effective phase conductivity is given by, 

αK
αr

α

αα
α µ

ρ rgkkK = ............................................................................................................... (3) 

The phase heads for LNAPL and water, , are functions of the layer thicknesses b  and 
.  When the reference elevation is the base of the aquifer and the reference pressure is 

atmospheric pressure, the water head becomes, 

αh o

wb

o
w

o
ww bbh

ρ
ρ+= , and the LNAPL head, 

.  Substitution of the expressions for head into Eq. 1 gives the flow equation for the 
aqueous phase:  

wo bb +=oh









+=

rd
db

ρ
ρ

rd
dbbπ KQ o

w

ow
www lnln

2 .............................................................................. (4) 

and for LNAPL, 
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Equations 4 and 5 are coupled, because the thickness appearing in each equation depends on 
the thickness of the other layer.  The solution to the coupled equations is subject to the exterior 
boundary condition (constant thickness at the exterior):  

oio

wiw

bR)(rb
bR)(rb

==
==

............................................................................................................... (6) 

 
Scaling.  In Eqs. 4-6 there are two dependent variables ( , ) and one independent variable 
(

wb ob
r ).  The dependent variables are a function of ten parameters ( , , , , wQ oQ wK oK

wρ , oρ , R , , , ) and the independent variable, the radial distance wr wib oib r .  Using scaling 
analysis, the number of parameters can be reduced by half to only five dimensionless groups 

)rDe, b, QDw(Q D  ,DwiDo ρ, .  The equations in dimensionless form are, 
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and 
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The boundary conditions become 

DwiDoiDeDDo

DwiDeDDw

bb)r(rb
b)r(rb

−===
==

1
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The dimensionless groups in Eqs. 7-9 are related to the ten parameters as follows: 

 
• Dimensionless water flow rate: 

22 tiw

w
Dw

bKπ
QQ =  

• Dimensionless LNAPL flow rate: 

22 tio

o
Do bKπ

QQ =  

• Density ratio: 

w

o
D ρ

ρρ =  

• Dimensionless water thickness at the exterior: 

ti

wi
Dwi b

bb =  

• Dimensionless distance from the well to the exterior: 
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w
De r

Rr =  

The wellbore radius normalizes the independent dimensionless variable,  

w
D r

rr =  , 

and the dependent dimensionless variables are normalized by the initial total thickness, where 
.  wioiti bbb +=

 
That is, 
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Solution of Dimensionless Equations 
The exact solution to Eqs. 7-9 is expressed by two equations (see Appendix B for derivation).  
The first equation relates the dimensionless water thickness to the dimensionless LNAPL 
thickness at a fixed dimensionless distance: 
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where,  

Dw

Do

b
bv =  

 
Dw

Do

Q
Qε =  

Dw

Do
D Q

Qρε =′  

( )214 εεφ ′−+=  

( )
φ
εα
′+= 1   . 

The second equation, Eq. 11, expresses LNAPL and water flow into an equivalent one-phase 
system.  That is, the equation is similar to the Dupuit equation (Bear 1979, Charbeneau 2000), 
which describes the drawdown of water in an unconfined aquifer:  
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

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The total dimensionless rate is 

DoDDwDt QρQQ +=  

and the equivalent total thickness is, 
222 2 DoDDwDoDDwDt bρbbρbb ++=  . 

Even though Eqs. 10 and 11 are coupled, they can be solved on a spreadsheet.  Solutions are 
obtained by iterating on v  until a required accuracy is achieved (Delliste et al. 1998). 
 
Two-Phase Flow when 1=Dρ .  When the densities of the LNAPL and water are equal, Eqs. 10 
and 11 are uncoupled and the solution reduces to a form similar to the Dupuit equation:  







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bbQQQ
ln2

22
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where the total equivalent thickness is now the actual total thickness of the LNAPL and water 
( ).  Although similar to the Dupuit equation, Eq. 12 is slightly more general 
because it includes different phase viscosities and relative permeabilities in the dimensionless 
rates.  

DwDoDt bbb +=

 
Maximum Fluid Rates When b .  Maximum drawdown at the wellbore occurs 
when the thicknesses of the water and LNAPL layers at the wellbore are zero.  The flow rates of 
oil and water must now be at their maximum values.  For complete drawdown, Eqs. 10 and 11 
are uncoupled and the maximum dimensionless rates are,   
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Equations 13 and 14 provide useful mathematical extremes, but achieving complete drawdown is 
virtually impossible in the field. 
 
Maximum LNAPL Rate From Skimmer Wells.  Skimmer wells are specially designed to 
recovery LNAPL, with little or no water (Q ).  The maximum pumping rate of LNAPL 
occurs when the thickness of the LNAPL is completely drawn down at the wellbore (b ).  
For these conditions, Eqs. 10 and 11 reduce to a simple expression for the maximum LNAPL 
pumping rate in a skimmer well: 

0=Dw

0=Dow
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In dimensional form, Eq. 15 becomes 
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Equation 16 is similar to the result obtained for coning of water and gas into an oil production 
well (Pirson 1958). 

Once the dimensionless LNAPL rate is determined from Eq. 15, the thickness of the LNAPL 
and water layers can be calculated.  Equations 11 and 12 can be used to approximate the 
thickness of each phase when a very small water flow rate is specified, i.e. ; 
otherwise, the equations are singular at zero water flow rate.  For exactly zero water rate, Eqs. 7 
and 8 can be integrated to give, 
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and, 

( DoiDoDDoiDw bbbb −−−= ρ1 )......................................................................................... (18) 

 
Maximum Pumping Rates for No Smearing.  It is often desirable (or even regulated) to limit 
spreading of the LNAPL into previously uncontaminated soil.  To avoid this smearing of the 
LNAPL below the initial LNAPL-water interface, the following constraint must be satisfied: 

0
ln

≤

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




= DeD rrd

Dw

rd
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Equation 19 states that no smearing will occur when the water thickness at the exterior is either 
flat or decreasing away from the wellbore.  The constraint need only be applied at the exterior 
because that is where smearing first occurs when the water-pumping rate is increased.  

Application of the constraint to Eqs. 10 and 11 (or more easily to Eqs. 4 and 5), gives two 
possible solutions.  The nontrivial solution is, 

Dw
DwiD

Doi
Do Q

b
bQ

ρ
≥ ...................................................................................................... (20) 

In dimensional form, Eq. 20 becomes, 

w
wwio

ooiw
o Q

Kb
KbQ

ρ
ρ≥ ........................................................................................................ (21) 

 
Equation 20 (or 21) is a very simple, but important result.  It shows that the dimensionless 

oil rate at the limit for no smearing (the equality in Eq. 20) is a linear function of the 
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dimensionless water rate.  Furthermore, Eq. 20 is independent of the well’s hydraulic radius of 
influence ( R ), which makes it more accurate when estimating the optimum pumping rates for no 
smearing.  
 
Results and Discussion 
Optimal recovery of separate phase hydrocarbon must be defined by the site remediation goals.  
The goal could be to minimize the amount of residual hydrocarbon left in the formation.   
However, this may result in small rates of recovery over an extended time.  It may also be 
desirable (or required by regulation) to accelerate the rate of free hydrocarbon removal even 
though this may result in a reduction in the ultimate recovery of hydrocarbon.  Capital, 
operations and maintenance costs, of course, are always important.  
 
Dual-Phase Pumping Windows.  Equations 10 and 11 can provide estimates of the water-
pumping rate required to maximize LNAPL recovery depending on the site remediation goals.  
For example, the solution for simultaneous flow of LNAPL and water given by Eqs. 10 and 11 
can be used to construct pumping windows for the particular contaminated aquifer that describe 
the permissible limits of the dimensionless rates.  Rates outside the pumping window are not 
physically possible in this segregated model because no additional drawdown of LNAPL and 
water is possible.   Figures 3 and 4 give examples of pumping windows when Der  is 100, Dρ  is 
0.8 (typically value for petroleum hydrocarbons), and b is 0.2 and 0.1, respectively. Doi

In Fig. 3, point a indicates the maximum possible dimensionless LNAPL rate from a 
skimmer well as calculated by Eq. 15.  This rate corresponds to complete drawdown of the 
LNAPL in the well.  It is relatively small compared to the rate that can be obtained if water is 
also pumped.  As water is pumped, the hydraulic gradient of the LNAPL towards the well is 
increased.  The LNAPL thickness also increases.  The maximum LNAPL rate, therefore, is 
increased from that of the skimmer well.  This rate follows a curve that goes from point a to 
point b and ends at point c, which is outside the range of the plot.  Along this curve, LNAPL is 
completely drawn down ( ).  Point c corresponds to the maximum possible LNAPL rate 
as calculated by Eqs. 13 and 14.  

0=Dowb

The window in Fig. 3 is completed when the curve for complete water drawdown is plotted 
below the curve for complete LNAPL drawdown.  The water drawdown curve (when ) 
begins at point d, which corresponds to no LNAPL flow, and ends at point c, where the two 
drawdown curves intersect. 

0=Dwwb

The heights of the LNAPL and water layers at points a–f in Fig. 3 are given in Figs. 5–9.  
Points a, e, and f are at a constant LNAPL rate equal to the maximum skimmer rate.  As is 
shown, rates at points a, e, and b give no smearing of the LNAPL below the original water table.  
The layers at points f and d, however, smear. 

The size of the pumping window in Fig. 4 is much smaller than that in Fig. 3 because the 
initial dimensionless LNAPL thickness is smaller (0.2 versus 0.1 in Fig. 4).  As expected, the 
maximum LNAPL rate for a skimmer well is also much smaller in Fig. 4 than in Fig. 3.  
 
Guidelines to Avoid Additional Smearing.  The pumping window can be used to estimate the 
required rates to avoid additional smearing into the aquifer.  If the water table has fluctuated and 
residual LNAPL is located below the current water table, Eqs. 10 and 11 can be used to estimate 
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the flow rates required to avoid additional smearing of LNAPL below soil zones that already 
contain residual LNAPL. 

For the case where there is no residual LNAPL below the current water table, the linear 
constraint given by Eqs. 20 and 21 apply.  Rates in the shaded region in Figs. 3 and 4 give no 
smearing (dashed-lines are the limit of the constraint).  Thus, rates at points b and e are at the 
limit for no smearing.  Point b, however, approximates the optimum because it provides an 
estimate of the maximum water and LNAPL rates for no smearing.  

Figure 10 gives a type curve that can be used to estimate the maximum rates for no smearing 
(such as point b) for different values of initial LNAPL thicknesses and density ratios.  The 
maximum LNAPL rate for a skimmer well is also given in the figure.  The increase in the dual-
pump LNAPL rate over the skimmer rate varies between 2.0 and 3.0 for density ratios from 0.7 
to 0.9. It is relatively independent of LNAPL thickness.  For small initial oil thickness, the no 
smearing water rate may be impracticably small and skimmer pumps will be required (see Fig. 4 
where the no-smearing region becomes small). 

Equation 21 (or 20) can also be used at the remediation site to adjust the water rates so that 
smearing does not occur.  The procedure would be to first calculate the LNAPL rate based on the 
equality condition in Eq. 21.  If the actual pumping rate is equal or greater to the calculated rate, 
no smearing probably exists.  If the actual LNAPL rate at the well is less than the calculated rate, 
the water rate should be decreased until Eq. 21 is satisfied.  One can continuously adjust the 
water-pumping rate to satisfy Eq. 21. 
 
Conclusions 
We have developed new analytical solutions to assist in the design of long-term free-
hydrocarbon recovery systems when both the water and hydrocarbon (LNAPL) phases are 
flowing.  The new solutions allow for the thickness of the phases to vary with radius. They are 
valid for soils of large hydraulic conductivity where the effect of capillary pressure on coning is 
small.  These solutions apply to skimmer wells, which are used to collect LNAPL with little or 
no water production, and to single- and dual-pump wells, where water may be produced 
separately.   Based on the cases examined here, the main conclusions of this research are: 
• A skimmer well avoids smearing of the LNAPL below the water table, but the rate of 

recovery may be small.  Pumping the aqueous phase with a single- or dual-pump well may 
increase the LNAPL recovery rate by a factor of about 2.0 to 3.0 over the skimmer rate, and 
also avoid smearing. 

• Significant increases in the LNAPL rate beyond the factor of 2.0 to 3.0 may be achieved with 
additional water pumping, but the increased water rate may cause smearing below the water 
table.  This may be acceptable if smearing has already occurred perhaps because of a rising 
or falling water table. 

• Equation 21 (or 20) can be used to estimate the water rate required to avoid smearing.  If the 
LNAPL recovery rate is smaller than expected for the water rate used, the water rate should 
be decreased until Eq. 21 is satisfied.  Equation 21 is easy and practical to use because it is 
independent of the well’s hydraulic radius of influence. 
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Nomenclature 
A = area, m2 

α = function of ε  and ε ′ (see Eq. 10) 
b = thickness, m 
ε = ratio of dimensionless rates (see Eq. 10) 

ε ′ = product of density ratio and ε  (see Eq. 10) 

g = gravity constant, m/s2 

h = hydraulic head, m 
K = hydraulic conductivity, m/s 
k = permeability, m2 
rk = relative permeability at constant saturation 

ϕ = function of ε  and ε ′ (see Eq. 10) 
ρ = density, kg/m3 
q = Darcy flow rate, m/s 
Q = flow rate, m3/s 
HR = aspect ratio 
R = hydraulic radius of influence, m 
r = radial distance or coordinate, m 

T = transmissivity, m2/s 
µ = viscosity, Pa·s 
v = ratio of dimensionless thicknesses (see Eq. 10) 
z = elevation from the bottom of the aquifer, m 

Subscripts 
w = water (1st subscript) or wellbore (2nd subscript) 
o = LNAPL or oil 
α = phase 
D = dimensionless variable 
i = initial value 
e = area of influence 
t = total or equivalent 
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Appendix A: Effect of Vertical Equilibrium on LNAPL Recovery 
Vertical equilibrium (VE) is a condition that causes maximum crossflow of fluids in the vertical 
direction (Lake 1989). This appendix derives the criterion that determines when VE is a good 
approximation.  

The easiest way to understand the VE assumption is to write the mass conservation 
equations for incompressible and steady flow in both the radial ( r ) and vertical ( ) directions 
and scale the equations (Lake 1989, Charbeneau et al. 1999).   The two-dimensional, steady-state 
mass conservation equations for the air, LNAPL and water phases are 

z

( ) 01 =
∂

∂+
∂
∂

z
qrq

rr
z

r
α

α ................................................................................................... (A-1) 

Substitution of Darcy’s law into Eq. A-1 gives 
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where is the relative permeability for phase αrk α , is the hydraulic conductivity in the radial 
direction for phase 

αrK
α , and is the hydraulic conductivity in the vertical direction for phase αzK

α .  If the independent variables are scaled by 
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DD b

zz
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and the hydraulic conductivities are spatially constant, Eq. A-2 can be rearranged as 
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where the dimensionless aspect ratio  is given by HR
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Equation A-4 describes the balance between radial and vertical flow;  determines the 
balance.   is a ratio of the characteristic time for LNAPL to move across the aquifer in the 
radial direction to that in the vertical direction.  When  is small there is little communication 
in the vertical direction and the NAPL should experience no drawdown.  When  is large, 
saturation and head fluctuations in the vertical direction decay much faster than those in the 
radial direction.  For large , therefore, the fluctuations in the vertical direction can be 
neglected and Eq. A-4 can be written in two parts: 
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and 
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Equation A-6 can be integrated to give the steady-state form of Darcy’s law, i.e. 
= constant. Equation A-7 can be rewritten as AqQ αα =

0
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hRk
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For large  and finite vertical flow, Eq. A-8 implies that the vertical hydraulic gradient must be 
small.  That is, 

HR

0
z
h

D

≈
∂
∂ α ....................................................................................................................... (A-9) 

so that the hydraulic phase gradient is constant vertically, i.e. the fluid potentials are in 
hydrostatic equilibrium.  

Figure 11 gives an example of the two-dimensional steady-state LNAPL flow rate after one 
year of recovery for different values simulated with UTCHEM (McAdams 1997).  As shown, 
the LNAPL rate decreases as increases.  The decrease in the LNAPL rate is the result of a  
reduction in the LNAPL transmissivity near the wellbore as increases.  That is, as VE is 
approached, LNAPL flows more readily in the vertical direction and the LNAPL layer thickness 
can be more easily drawn down.  For a small or nearly zero , however, flow is nearly 
horizontal and the LNAPL layer remains at its initial thickness.  

HR
HR

HR

RH

The simulation results in Fig. 11 demonstrate that for the uncertainties in the aquifer 
properties and geometries, the assumption of VE is valid for an value greater than 10.  A  
greater than 10 has been shown by others to be sufficient to ensure that vertical flow is well 
described by VE for viscously dominated flow (Lake 1989).

HR HR

 

Although we have not examined all possible cases here, this work and our previous 
experience (Lake 1989, McAdams 1997) suggest the following general conclusions: 

1. A single dimensionless group, the effective aspect ratio , scales the vertical 
equilibrium approximation. 

HR

2. VE is a good approximation whenever  is greater than about 10.  The other limit, 
which is absolutely no crossflow, occurs whenever  is less than 0.1.  Given typical conditions 
in most operations, the VE approximation is more nearly satisfied than the no-crossflow limit. 

HR
RH

3. Calculations made assuming VE produce smaller NAPL recovery rates than under 
conditions of no crossflow.  Thus, VE estimation is pessimistic in its steady-state recovery 
prediction. 
 
Appendix B: Two-Phase Flow Solution 
Equations 7 and 8 are solved subject to the exterior boundary conditions given in Eq. 9 and the 
wellbore boundary condition of constant LNAPL and water flow rate.  Division of Eq. 7 by Eq. 8 
gives,  
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After some algebra, Eq. B-1 for a fixed dimensionless distance becomes 
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Equation B-2 can be rewritten in terms of the new parameters defined in Eq. 10 as 
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Integration of Eq. B-3 by separation of variables yields the solution presented in Eq. 10.  The 
integral is 

∫∫
+

−
−
−=

iDwi

Dw

v

v

b

b
Dw

D w
dv

v
'v

v
db

b
ε
ε
11 ............................................................................... (B-4) 

Equation 11 is derived from the definition of the total equivalent flow rate 
( DoDDwDt QQQ ρ+= ).  Substitution of Eqs. 7 and 8 into this definition yields the following 
expression (after separation of variables) 
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From the definition of the total equivalent thickness of LNAPL and water (see Eq. 11), Eq. B-5 
can be rewritten as 

2
ln

2
Dt

DDt
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Integration of Eq. B-6 to the exterior yields Eq. 11. 
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Fig. 1- Schematic cross-section of a dual-pump recovery well.  
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Fig. 2- Cross section illustrating steady incompressible radial flow of LNAPL and water phases 
to a pumping well in an unconfined aquifer.  The shaded region shows the volume smeared 
below the original water table. 
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Fig. 3- Operational window for dual-phase pumping with  ,100=Der ,8.0=Dρ  and 

  The shaded region indicates rates that give no smearing.  Point a is the maximum 
LNAPL rate from a skimmer well (Eq. 15), b gives the maximum rates for no smearing (Eqs. 10, 
11, and 20), c gives the maximum rates for complete drawdown (Eqs. 13 and 14), and d is the 
maximum water rate with no LNAPL flow.  
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Fig. 4- Operational window for dual-phase pumping with r  ,100=De ,8.0=Dρ  and    
The no smearing region and the LNAPL rates are smaller compared to Fig. 3. 
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Fig. 5- (Case a in Fig. 3) Coning of LNAPL and water when LNAPL is pumped from a skimmer 
well at the maximum rate (Eq. 15) when    ,0=DwQ , ,100=Der8.69x10-4=DoQ ,8.0=Dρ  and 

 .2.0=Doib
 

0.70

0.80

0.90

1.00

1.10

1 10 100
Dimensionless distance (rD)

D
im

en
si

on
le

ss
 th

ic
kn

es
s (

b  D
)

Water

LNAPL

Air

0
ln

=








= DeD rrD

Dw

rd
db

 
 
Fig. 6- (Case e in Fig. 3) Coning of LNAPL and water at the limit of the no-smearing region (Eq. 
20) when    ,2.78x10-3=DwQ ,8.69x10-4=DoQ ,100=Der ,8.0=Dρ  and b  .2.0=Doi
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Fig. 7- (Case f in Fig. 3) Coning of LNAPL and water at the center of the smearing region when 

   ,8x10-3=DwQ ,8.69x10-4=DoQ ,100=Der ,8.0=Dρ  and b  .2.0=Doi
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Fig. 8- (Case d in Fig. 3) Coning of LNAPL and water at the maximum water rate with no 
LNAPL flow when     ,x1039.1 -2=DwQ ,0=DoQ ,100=Der ,8.0=Dρ  and  .2.0=Doib
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Fig. 9- (Case b in Fig. 3) Coning of LNAPL and water at the maximum LNAPL and water rates 
for no smearing (Eqs. 10, 11, and 20) when    ,x109.6 -3=DwQ ,x1016.2 -3=DoQ ,100=Der

,8.0=Dρ  and b  .2.0=Doi
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Fig. 10- Design curves to estimate maximum a) water and b) LNAPL pumping rates to avoid 
smearing ( ).  During pumping, Eq. 20 should be used to adjust rates so that smearing 
does not occur.  The dashed lines are the maximum rates for a skimmer pump when no water is 
pumped.  
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Fig. 11- Two-dimensional simulations with UTCHEM showing the effect of the VE assumption 
on the steady-state LNAPL rate after one year of LNAPL recovery (no capillary pressure).15 
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